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Abstract
Purpose of Review The genetic susceptibility and dominant
protection for type 1 diabetes (T1D) associated with human
leukocyte antigen (HLA) haplotypes, along with minor risk
variants, have long been thought to shape the T cell receptor
(TCR) repertoire and eventual phenotype of autoreactive T
cells that mediate β-cell destruction. While autoantibodies
provide robust markers of disease progression, early studies
tracking autoreactive T cells largely failed to achieve clinical
utility.
Recent Findings Advances in acquisition of pancreata and
islets fromT1D organ donors have facilitated studies of Tcells
isolated from the target tissues. Immunosequencing of TCR
α/β-chain complementarity determining regions, along with
transcriptional profiling, offers the potential to transform bio-
marker discovery.
Summary Herein, we review recent studies characterizing
the autoreactive TCR signature in T1D, emerging technol-
ogies, and the challenges and opportunities associated with
tracking TCR molecular profiles during the natural history
of T1D.

Keywords Tcell receptor . Immunosequencing . Type 1
diabetes . Human immune repertoire . Adaptive immunity .

Autoimmunity

Introduction

Abundant evidence in animal models support the central role
T cells play in the adaptive immune-mediated killing of pan-
creatic β-cells in type 1 diabetes (T1D) [1–4]. This direct
pathogenic role is corroborated by bone marrow and adoptive
cell transfers in both non-obese diabetic (NOD) mice and pa-
tients [5–8], along with T cell receptor (TCR) transgenic
models [9]. Yet, key differences have been noted in the prom-
inent lymphocytic infiltrate present in the NOD mouse in
comparison to the variable and often sparse insulitis observed
in the pancreas of organ donors with T1D [10, 11]. These
differences have prompted extensive efforts to further investi-
gate disease mechanisms and the nature of the autoreactive
response in human beings [10–14]. The capacity to acquire
tissues directly from pancreas and islets of organ donors with
T1D has provided a unique opportunity to study tissue-
resident lymphocytes and elucidate their phenotype and mo-
lecular signature.

The search for biomarkers of T cell autoreactivity in T1D
has largely been driven by efforts to identify T cell peptide
epitopes derived from antigens recognized by autoantibodies
[15, 16]. These studies have employed MHC-multimers,
ELISpot, and T cell dye dilution assays, among others
[17–19]. A significant number of clones and TCR reactivities
have emerged; however, the adoption of bioassays to track
autoreactive T cells has largely remained restricted to individ-
ual investigator laboratories. The lack of widespread adoption
of such assays likely results from both biological and technical
limitations [i.e., requirements for significant numbers of
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viable peripheral blood mononuclear cells (PBMC) and as-
says based on specific human leukocyte antigen (HLA) hap-
lotypes]. Moreover, the antigen specificity of the TCR is
thought to direct and retain T cells within defined tissues and
draining lymph nodes (LN) [20–22], making the circulating
frequency of autoreactive T cells exceptionally low—estimat-
ed at less than 0.05%CD4+ Tcells [23•] and 0.01% of CD8+ T
cells [24, 25]. This low frequency restricts the numbers of
antigens and epitopes available for analysis and requires con-
siderable volumes for current assays, a notable limitation in
pediatric patients. To address some of these limitations and
further explore the potential of TCR repertoire analysis, we
along with others have begun to employ immunosequencing
of TCRs to identify T cell biomarkers with a high level of
sensitivity and specificity. With this review, we summarize
current progress in the field of T cell sequencing technologies,
the potential for novel biomarker discovery, and the applica-
tion of this knowledge base toward developing new therapies
to cure T cell-mediated autoimmune diseases, with a specific
focus on T1D.

Role for Autoreactive T Cells in T1D Pathogenesis

Dominance of HLA Risk

The HLA-DR3/DR4-DQ8 haplotype carries the highest risk
for progression to T1D [26]. HLA molecules shape the devel-
oping TCR repertoire during thymic selection. Developing T
cells integrate signals from recombination events resulting in
fate determinations to the TCR γ/δ orα/β lineage. Among the
α/β TCR lineage, positive and negative selection events fur-
ther shape the repertoire including the emergence of thymic-
derived regulatory T cells (tTreg), which are necessary to es-
tablish peripheral immune tolerance [27]. Approximately 57
genetic loci identified by genome-wide association studies
(GWAS) (e.g., PTPN22, CD25, SH2B3, IFIH1, CD226,
etc.), each with low individual odds ratios, are thought to
provide additional risk besides HLA, by promoting innate
inflammation, leading to altered immune cell signaling, and
augmenting β-cell stress, ultimately resulting in a failure in
immune tolerance [28]. Importantly, HLA haplotypes and oth-
er susceptibility alleles are carried at varying frequencies in
different ethnic groups. Even among groups with similar
background genetics, geographic exposures may result in
highly variable disease penetrance. Combinations of alleles
can also provide dominant protection, as noted for
DQB1*06:02 in Caucasians as well as DPB1 polymorphisms
in non-Caucasian ethnicities [29, 30]. Moving forward, it will
become important to understand both the impact of allelic
frequencies and the role of environmental exposures in deter-
mining the diversity and specificity of the TCR repertoire in
various T1D cohorts.

T Cell Studies in nPOD and Following Pancreatic
Transplant

Over the past decade, the Network for Pancreatic Organ do-
nors with Diabetes (nPOD) program has facilitated investiga-
tions of the T1D pancreas across a wide range of donor ages,
races, and T1D disease durations [31]. The insulitis lesion that
histologically characterizes T1D is much less fulminant in the
human pancreas than in the NOD mouse [32, 33]. Human
insulitis has been shown to include macrophages, natural kill-
er (NK) cells, B cells, and CD3+ T cells, with a predominance
of CD8+ relative to CD4+ T cells. A relationship between this
CD8+ T cell predominance within insulitis and HLA class I
hyperexpression in islets has been observed exclusively in
individuals with T1D [34]. CD8+ T cells are under increased
scrutiny to identify key receptors and characterize their func-
tional role in T1D development for potential use as bio-
markers or therapeutic targets. Indeed, insulitic CD8+ TCR
reactivities appear unique to individual islets in the limited
number of recent-onset T1D organ donors examined so far;
perhaps these represent local clonal expansions, with nearby
islets demonstrating autoreactivity to distinct epitopes/
autoantigens [34]. Moreover, HLA-A*02-01-tetramer stain-
ing for epitopes derived from six known T1D autoantigens
demonstrated glucose-6-phosphatase 2 (G6Pase 2)-reactive
CD8+ Tcells to be the most prevalent within lesions examined
from 45 T1D donors of varying disease durations [34].
Insulitic lesions were specific for a single β-cell autoantigen
in donors with recent-onset disease whereas diverse T cell
autoreactivity was observed in the majority of donors with
longstanding disease. Lack of autoreactivity to any epitope
tested was noted from two long duration (≥ 1 year) cases, even
in the presence of insulitis [34]. Monospecificity early in dis-
ease followed by oligoclonal T cell expansion may be seen
within human islets as T1D advances, similar to epitope
spreading demonstrated in the NOD mouse [35]. Efforts to
investigate this phenomenon in human tissues are limited by
the inability to perform longitudinal studies of the T1D
pancreata. Nevertheless, we predict that insulitis lesions in
human pancreata with long- versus short-duration T1D will
show evidence of similar evolution over time.

Antigen-driven expansion of autoreactive T cells occurs in
T1D patients who have undergone pancreas transplant with
recurrent T1D. This process is marked by sudden and severe
hyperglycemia, the appearance of new islet autoantibodies
[i.e., glutamic acid decarboxylase 65 (GAD65), insulinoma-
associated protein-2 (IA-2), zinc transporter 8 (ZnT8)], and
expansion of autoreactive T cells. Circulating T cell
autoreactivity varied across transplant recipients with
GAD65-specific CD4+ T cells identified from two patients
and G6Pase 2-reactive CD8+ T cells from a third. In one pa-
tient, GAD65-reactive CD4+ T cells were present in the pe-
ripheral blood, the transplanted pancreas, and pancreas
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draining LN (pLN) with persistent detection of a single TCR
β-chain complementarity determining region 3 (CDR3), de-
spite immunosuppressive treatment [36•]. A fourth transplant
recipient had GAD65-specific CD8+ T cells exhibiting a
CCR7− memory phenotype within the pancreas transplant
draining LN. Histologically, B cell and T cell insulitis, β-cell
loss, and variable degrees of transplant rejection were seen
[36•]. These observations highlight that not only is the
autoreactive T cell repertoire pathogenic, but also the memory
T cell response persists for many years and may display resis-
tance to drugs capable of suppressing allograft rejection.

Putatively Known Autoreactive TCRs

Analyses in Peripheral Blood

T cell clones specific for β-cell antigens (e.g., G6Pase 2, in-
sulin, pre-proinsulin, IA-2, GAD65, ZnT8 [37]) have been
isolated from peripheral blood of living patients with T1D
but can also be detected from control subjects [18, 23•, 24,
38•, 39–42]. We and others have demonstrated high diversity
of the TCR repertoire, even within the islets and pLNs of
patients with T1D and autoantibody positive subjects who
have elevated risk of progressing to disease [23•, 38•].
Functionally, detailed studies have revealed that peripheral
blood T cells from HLA-matched T1D and control subjects
produce IFN-γ versus IL-10, respectively, in response to ac-
tivation with autoantigen [43]. Two GAD-reactive TCR
clones, 4.13 and R164, isolated from peripheral blood of pa-
tients with T1D were derived from shared TCRα and TCRβ
variable (V) gene segments recognizing a common peptide
target (i.e., GAD555–567). These clones have only minor func-
tional differences in the amino acid sequence of the CDR3
domain but exhibit different binding avidities [44]. In vivo
studies of humanized TCR-transgenic mice expressing the
lower-avidity 4.13 or high-avidity R164 clone revealed differ-
ences in thymic selection and peripheral T cell skewing. 4.13
TCR-transgenic mice exhibited a more tolerogenic repertoire
including IL-10 producing T cells whereas R164 TCR-
transgenic mice were observed to exclusively contain IFN-γ
positive T cells [45]. To further examine the functional impli-
cations of TCR avidity in vitro, we used lentiviral transduction
of primary human T cells to engineer GAD 4.13 and GAD
R164 TCR avatars. Compared to 4.13 Tregs, high-avidity
R164 Tregs exhibited greater suppressive capacity over
antigen-specific responder T cells activated with GAD555–567

peptide or bystander CD8+ T cells recognizing a MART-1
peptide (Yeh et al., in press). These studies suggest
autoreactive TCR avidity likely influences the functions of
both Treg and effector T cell (Teff) populations in T1D path-
ogenesis. However, these studies cannot directly infer

diabetogenicity and have led to investigations of T cells iso-
lated from islet tissues of deceased organ donors with T1D.

Islet Studies

In one of the first studies of Tcells isolated from a human T1D
pancreas, clones from five TCRβ V-gene families (Vβ1,
Vβ7, Vβ11, Vβ17, Vβ22) were found to be expanded. One
of these clonal expansions, Vβ22, was also expanded in
spleen and peripheral blood; however, autoantigen or epitope
reactivities were not determined for the expanded clones [46].
We recently reported an extensive analysis of the adaptive
repertoire from pLN, spleen, PBMC, and inguinal or mesen-
teric LN of 18 T1D and nine control organ donors [38•]. These
efforts also demonstrated limited clonal overlap between cir-
culation and the target organ (Fig. 1a) and support the notion
that studies of peripheral blood T cells alone are likely insuf-
ficient to fully characterize the T1D autoimmune repertoire,
highlighting the need for studies of intra-pancreatic T cells in
T1D.

As noted above, insulitis is heterogeneous throughout the
human T1D pancreas, most often affecting residual insulin-
containing islets, and the ability to expand live T cells from
isolated human islets containing insulitis represents a remark-
able achievement. Indeed, Pathiraja et al. characterized 53
intra-islet CD4+ T cell clones and reported that 14/53 reacted
with proinsulin [167]. CDR3 sequences were not conserved
across the 14 proinsulin-reactive intra-islet T cell clones sug-
gesting that they did not originate from a common parent
clone. Similarly, Michels et al. characterized three
proinsulin-reactive T cell clones (i.e., 20D11, 6H9, and 8E3)
isolated from human T1D islets; 20D11 and EH9 are the first
human intra-pancreatic isolates specific for the insulin B:9–23
peptide [168••]. In a recent report by Babon et al., GAD-,
proinsulin-, IA-2-, and chromogranin A-reactive CD4+ T cell
clones were isolated from human islets from organ donors
with T1D [169••]. CD8+ T cells specific for insulin, IA-2,
and G6Pase 2 peptides were also detected. Functionally,
antigen-stimulated cytokine secretion varied across clones
but, overall, it was pro-inflammatory with a Th1 bias
[169••]. Further, our recent study of intra-islet T cells from
one T1D donor revealed a TCRβ CDR3 corresponding to
the previously identified GAD-reactive clone 4.13; no other
known autoreactive clones were identified from the islet sam-
ple [38•]. GAD4.13 was identified in LN or spleen samples
from six additional T1D donors. These reports highlight the
apparent heterogeneity of T1D with regard to T cell antigen
reactivity and T cell function/phenotype. These studies also
emphasize the need for large datasets to illuminate molecular
patterns likely governed by HLA and minor T1D risk alleles
(e.g., INS/IGF2) that might influence clonal frequency
throughout the natural history of disease (Fig. 2).
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T Cells Recognizing Neo-epitopes, Defective Ribosomal
Products, and Hybrid Insulin Peptides

Growing evidence supports a role for epitopes derived from
defective ribosomal products (DRiPs) and hybrid insulin pep-
tides (HIPs) as potentially initiating autoantigens in T1D (Fig.
2). DRiPs result from dysfunctional or erroneous translation
of pre-proinsulin transcripts [173••]. For instance, translation
of INS mRNA from an alternative open reading frame can
generate novel, seemingly aberrant peptides. In a recent report
by Kracht et al., CD8+ T cells specific for an insulin DRiP
peptide were isolated from peripheral blood of patients with
T1D and were demonstrated to specifically destroy human
islet cells in vitro [173••]. Similarly, HIPs are derived from
the post-translational fusion of proinsulin peptides with other
β-cell proteins within the secretory granule [174••]. HIP-
reactive T cells have been isolated from the pancreata of hu-
man organ donors with T1D, and perhaps not surprisingly, the
HIP-reactive clones (A2.11 and A3.10) exhibited HLA-DQ8
restriction [174••]. T cells recognizing modified insulin epi-
topes are likely not subjected to regulation by central tolerance
mechanisms, and there is evidence suggesting DRiP and HIP-
reactive T cells may be present in both control and T1D sub-
jects [173••]. However, high-risk HLA haplotypes may pref-
erentially present DRiP and HIP neo-epitopes generated with-
in the β-cell, supporting a diabetogenic role. Hence, T cells
recognizing DRiPs and HIPs likely represent an important
class of potential TCR biomarkers, particularly within the
context of certain HLA haplotypes, and may represent candi-
date targets for novel T cell-directed therapies.

Technologies for Analyzing TCR Sequences

Being a budding field, high-throughput immunosequencing
(REP-seq) does not have a well-defined or standardized meth-
odology for data acquisition and analysis. The reasons for this
variability are many but relate to the use of different sample
input tissues, sequencing platforms, and data analysis pipelines.
The choice of analysis platform is highly dependent upon the
needs for sample depth and resolution, along with practical con-
siderations of cost. A number of technologies have been utilized
for the acquisition and analysis of TCR sequences, varying from
single investigator concepts to turnkey commercial processing
pipelines. Below, we review some of the previously utilized
approaches and describe emerging technologies for
immunosequencing applications (Table 1).

Next-Generation Immunosequencing Approaches

Next-generation sequencing (NGS) of the TCRβ and B cell
receptor (BCR) IgH chain has enabled investigation of the adap-
tive immune repertoire from small blood or tissue samples.

Fig. 1 Potential applications for next-generation sequencing (NGS) of
the T cell receptor (TCR) repertoire in type 1 diabetes (T1D) research. a
For the CD8+ T cell, CD4+ conventional T cell (Tconv), and regulatory T
cell (Treg) subsets, the number of TCRβ complementarity determining
region 3 (CDR3) amino acid (AA) sequences shared across peripheral
blood mononuclear cells (PBMC, blue), intra-islet (green), pancreatic
draining lymph node (pLN, red), and spleen (orange) samples from a
single donor (Reprinted with permission from: Seay HR, et al. JCI
Insight. 2016;1(20):e88242) [38•]. b Circos plot depicting TRBV and
TRBJ gene families detected from a single PBMC sample. Colored
ribbons represent each gene family with frequency corresponding to
ribbon width. V-J combinations are indicated by ribbons connecting
across the circle. c Six thousand three hundred and twenty-one
clonotypes of known reactivity are shown here for > 20 diseases with
the number of known clonotypes indicated in parentheses for nine of the
most abundant: T1D N = 1655 (red), human immunodeficiency virus
(HIV) N = 640 (beige), Influenza N = 522 (purple), melanoma N = 548
(teal), Epstein-Barr virus (EBV) N = 492 (light purple), cytomegalovirus
(CMV) N = 481 (bright blue), rheumatoid arthritis (RA) N = 272 (gray
blue), multiple sclerosis (MS) N = 118 (orange), and systemic lupus
erythematosus (SLE) N = 88 (light green) [23•, 46–165]. d CMV-
associated TCRβ sequences were identified from CMV seropositive
(orange) and CMV seronegative (blue) subjects (left). Computer models
were trained using CMV-associated TCRβ and CMV seropositivity
status data (cohort 1, dashed lines). Models were validated using a
separate cohort of individuals (cohort 2, solid line). Receiver operating
characteristic (ROC) curve analyses indicate that NGS can identify CMV
serostatus with sensitivity = 0.90 and specificity = 0.89; area under ROC
(AUROC) = 0.93 for cross-validation of cohort 1 and AUROC = 0.94 for
cohort 2 (Reprinted by permission from Macmillan Publishers Ltd.:
Emerson RO, et al. Nat Genet. 2017;49(5):659–65) [166••]
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DNA/RNA from fluorescence-activated cell sorter-isolated im-
mune cell subsets can be used to generate recombined receptor
sequences using an Illumina sequencing platform [38•, 175••,
212, 213]. These technologies have quickly facilitated the gen-
eration of massive datasets (generally 5 × 104–1 × 106 sequence
reads per sample) presented in proprietary and public databases
(e.g., https://clients.adaptivebiotech.com/immuneaccess and for
T1D sequences, http://clonesearch.jdrfnpod.org/). In turn, there
is a need to develop new methods to parse, analyze, and
graphically depict the extensive information [214]. Indeed, it is
now possible to rapidly evaluate repertoire dynamics that

include measures such as overlap across samples (Fig. 1a) and
experimental groups, TCR sharing among multiple T cell sub-
sets, comparisons of clonality and diversity, V(D)J gene usage
(Fig. 1b), and public TCR sequences (Fig. 1c). Moreover, algo-
rithms to identify individual clones by nucleotide and/or amino
acid sequences, bioinformatics approaches are emerging to iden-
tify common peptide-binding motifs to facilitate the identifica-
tion of classes of TCRs capable of binding shared peptides/
epitopes [43].

High-depth NGS assays are limited by the current inability
to simultaneously detect and pair TCRα and TCRβ

Fig. 1 (continued)
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sequences, yet these high-throughput discovery efforts pro-
vide a powerful clinical screening tool that retains the sensi-
tivity to detect rare clones. Intermediate-depth applications
such as RNA-seq or primer targeted sequencing yield less
coverage and fewer sequence reads, but both TCR α- and β-
chain sequencing can be obtained from laser-captured tissue
microdissections or sorted lymphocyte subsets. Isolated RNA
can be reverse transcribed to cDNA and amplified for tran-
scriptome profiling to identify TCRs derived from alternate
open reading frame transcripts and specific allelic expression
[215]. Though moderate depth NGS does not allow for com-
plete reconstruction of the TCR or identify exact epitope re-
activity, these techniques can be used to characterize clonality,
diversity, and gene segment usage for both the TRA and TRB
genes. Adaptive pairSEQ allows for pairing of specific TCRα
and TCRβ sequences by leveraging fractioning and probabil-
ity based on relative abundance. However, there is a large
input requirement and only highly prevalent sequences can
be accurately paired.

Single-cell NGS tools involving directed-sequencing provide
the ability to reconstruct the complete TCRwith α- and β-chain

pairing, which is required to confirm precise antigen reactivity
and perform functional studies in vitro. Specifically, efforts that
combine directed TCRα- andβ-chain pairing with the addition-
al analysis of lineage specific transcription factors and effector
molecules not only provide the greatest opportunity for biomark-
er discovery but also have a bias toward detection of the most
frequent clones [216]. Indeed, single-cell transcriptional profil-
ing technologies offer high specificity and depth of information
but low depth of coverage at considerable single-cell cost
[175••]. New platforms and approaches are addressing this lim-
itation, with droplet-based mRNA-seq or α- and β-chain se-
quence pairing potentially facilitating analysis of single cells
with improved throughput capacity [43, 217••].

TCRs as Biomarkers

Limitations of Current T Cell Biomarkers

Marrero et al. identified islet antigen-reactive TRBV13-2
(Vβ8.2) public clones from the pLN of NOD mice.

Fig. 2 Hypothesized timeline of Tcell clonal expansion as it relates to the
development of autoantibodies, development of dysglycemia, and loss of
β-cell mass and/or function in the natural history of type 1 diabetes
(T1D). Staging of T1D is modeled after the 2015 consensus report
[170•] and modified from the Eisenbarth model of T1D [171, 172] with
pre-disposing factors as well as key immunologic and metabolic events

noted over the course of the disease. The Tcell expansion diagram reflects
development of a naïve T cell clone into stem cell memory T cell (TSCM),
central memory T cell (Tcm), effector memory T cell (TEM), effector
T cell (TEff), and tissue resident memory T cell (TRM) subsets based
on the model presented by Farber et al. [21], with colors (i.e., purple,
green, gray, orange) representing T cell receptor (TCR) clonal expansions
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Importantly, a tolerogenic vaccine composed of an
immunodominant peptide that binds the TCR Vβ8.2 chain
prevented T1D in NOD mice [47] supporting the notion that
public TCRs may serve as biomarkers and potential therapeutic
targets. Currently, autoantibodies represent the best available
biomarker to predict human T1D onset. At least 85% of children
with multiple β-cell-reactive autoantibodies will progress to
symptomatic disease within 15 years—with a lifetime risk ap-
proaching 100% [170•, 218]. Hence, there is a need to identify
autoreactive T cell biomarkers in the pre-diabetic period, ideally
prior to the loss of endogenous β-cell mass/function (Fig. 2).
When combined with genetic risk markers and/or seropositivity
for islet autoantibodies, T cell biomarker(s) may represent an
early predictive index of disease; the goal, to employ these early
clonal sequences as biomarkers of T1D progression, identify
suitable candidates for therapy, develop novel T cell-targeted
therapies, and monitor therapeutic responses.

Prior studies to assess cellular immunity and identify T cell
biomarkers of T1D relied on immunoblot, T cell proliferation,
ELISpot, and multimer staining with flow cytometry assays.
These approaches can discriminate patients with T1D from
healthy controls, though sensitivity and specificity are lower
than assays detecting autoantibodies [15]. However, immuno-
blot and T cell proliferation assays often require freshly isolated
cells, which limit their use in interventional trial settings [219].
Conversely, ELISpot and MHC multimer-based screening
methods are able to precisely identify the target antigen and
epitope as well as T cell phenotype, but sample requirements
and HLA restriction hinder multi-center utility. Through TCR
and transcriptional profiling, investigators now have the capacity
to identify T cell clones, phenotype, and the specific epitope
reactivities of T cells regardless of HLA haplotypes.

Lessons From Studies of Infectious Disease and Cancer

As a well-studied and penetrant pathogen in the US general
population, cytomegalovirus (CMV) provided a useful model
for studies of TCR β-chain sequencing [166••]. Through
high-throughput analyses coupled with machine learning, in-
vestigators were able to identify CMV-reactive TCRs and ac-
curately infer CMV seropositivity status from the TCR reper-
toire with area under the receiver operating characteristic
curve (AUROC) = 0.94 (Fig. 1d). Interestingly, only 164 of
the 488 (34%) CMV-reactive TCRβ identified were signifi-
cantly associated with CMV seropositivity [166••]. Perhaps
not surprisingly, the authors noted that public CMV-
associated TCRβ sequences were only identified from HLA-
matched cohorts, supporting the notion that TCR biomarkers
are HLA restricted. Altogether, these findings suggest that
given a sufficiently large cohort, it may be possible to build
computer algorithms to determine an individual’s likelihood
of progression to T1D based upon TCR repertoire analysis, for
specific HLA types.

Similar efforts in the field of cancer research have led to
advancements in treatment and monitoring of disease.
Notably, immune receptor deep sequencing can now be used
to characterize acute lymphoblastic leukemia as monoclonal
or polyclonal, identify the malignant T cell or B cell develop-
mental stage, monitor disease progression, and track therapeu-
tic response [220•]. NGS is also of great value for monitoring
rare T cell lymphomas, which are difficult to detect by tradi-
tional methods and consequently, are associated with poor
prognosis [221]. When sequencing is performed at baseline
prior to treatment, the TCR or BCR repertoire can be followed
throughout therapy, and minimal residual disease (MRD),
which is considered the most reliable means to predict patient
outcome and potential for relapse, can be evaluated with great-
er sensitivity via immunosequencing (i.e., 1 in 106 cells) com-
pared to previous standard methodologies (i.e., flow cytome-
try or allele-specific oligonucleotide PCR (ASO-PCR)) [220•,
222, 223]. These concepts have the potential to be translated
to T1D research, wherein autoreactive clones could be moni-
tored to evaluate therapeutic response following immunomod-
ulatory therapies, with the goal to detect persistent
autoreactive memory lymphocytes in circulation and poten-
tially track relapsing and remitting phases characteristic of
many autoimmune diseases [224].

Novel Methodology to Improve Detection

When considering how to apply TCR biomarkers in T1D
clinical trials, tissue restriction of the T cell repertoire repre-
sents a critical limitation [38•]. Indeed, our recent study sug-
gested that CD4+ T cell clones are highly tissue restricted
while CD8+ T cells clones may be present in multiple tissues
and in circulation (Fig. 1a) [38•]. Because T cells targeting β-
cell antigens are most abundant within the pLN or the pan-
creas itself [38•], strategies are needed to improve recovery of
autoreactive clones from accessible tissues (i.e., peripheral
blood). To address this, Thelin et al. utilized subcutaneous
scaffolds bearing β-cell lysates to draw an enriched popula-
tion of autoreactive T cells from the circulation of NOD mice
[225]. While further investigation is clearly needed, a safe
analogous methodology could be utilized to improve the re-
covery of autoreactive T cell clones following a local chal-
lenge. Beyond this, longitudinal studies are needed to identify
the initiating autoreactive TCRs, address whether there is ev-
idence of epitope spreading at the clonal level, and to char-
acterize antigenic spreading throughout the pre-T1D period
(Fig. 2).

TCR Sequencing in T1D

Efforts to identify public TCR using NGS are still in the
early stages in the field of T1D research. Thus far, the
greatest challenge stems from high repertoire diversity
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and low levels of clonal overlap, when comparing across
subjects and tissues. In our study of 18 T1D and nine
control subjects, deep sequencing of TCRs from T cell
subsets (isolated from pLN, spleen, PBMC, and inguinal
or mesenteric LN) showed that limited Treg or conven-
tional CD4+ T cell (Tconv) repertoire overlap exists across
tissues and in the circulation within a given individual
(i.e., 3–4% overlap between pLN and PBMC for T1D
donors) [38•]. Comparatively, within the CD8+ T cell sub-
set, approximately 20% of clones were shared across pLN
and PBMC [38•]. Further, for one donor, we were able to
sequence the intra-islet T cell isolate. We found only sev-
en CD4+ TCR clones conserved across islet and pLN
samples. However, 58 CD8+ TCRs were detected from
both pLN and islet tissues. Within this cohort, seven
HLA-A*02 matched T1D donors were examined for pub-
lic TCRs within the pLN and 14 unique CDR3 sequences
were common across the CD8+ population from each of
the seven donors [38•]. Hence, we expect that CD8+ T
cells may serve as a more reliable T cell biomarker in
T1D.

The sheer number of unique sequences present has raised a
new challenge as investigators search for public autoreactive
clone(s), a so-called needle in a haystack. In fact, contrary to
our original hypothesis, global TCR repertoire analysis could
not be used to discriminate T1D from control donors by broad
TRB gene usage. However, when we queried TCR NGS data
for known autoreactive T cell clonotypes, we identified 59
unique CDR3 β-chain amino acid sequences, the majority of
which were more prevalent in T1D donor tissues versus con-
trol or type 2 diabetes samples [38•]. Moreover, we reported
the CDR3 β-chain sequence of the GAD-reactive TCR clone
(4.13) to be highly enriched for seven T1D donors and one
autoantibody negative control subject with T1D permissive
HLA, perhaps representing a key driver of T1D pathogenesis
in these subjects. However, studies of multiple T cell subsets,
autoantibody positive organ donors, and longitudinal studies
of living subjects are needed to further characterize the path-
ogenic or protective role of this clone.

As noted above, Han et al. observed common sequence
motifs, where nucleic acid alterations within the V(D)J
junction resulted in TCRs with variability at the amino
acid level but similar tumor antigen reactivities [43].
This notion of shared motifs must be explored further in
T1D where a particular public clone seems unlikely to be
present in all or even the majority of patients, but patho-
genic T cells with common antigen reactivities are expect-
ed. Together, these observations point toward a need for
machine learning algorithms to determine conserved
autoreactive TCR repertoires concurrent with established
biomarkers (i.e., autoantibodies, genetic risk alleles), early
in the disease process when intervention is most likely to
impact disease course.

TCRs as Therapeutics

Clinical Response to T Cell Targeting Therapeutics

For nearly 50 years, immunomodulatory agents, including
those aimed at T cell blockade, have been prescribed to pre-
vent rejection and graft versus host disease in solid organ and
bone mar row t ransp l an t r e c ip i en t s [226–230 ] .
Immunosuppressants targeting global or precise T cell fre-
quency and function have since been applied for the treatment
of autoimmune diseases, such as multiple sclerosis (MS) and
rheumatoid arthritis (reviewed in [231, 232]). T cell-targeted
therapies have been tested in multiple T1D clinical trials
aiming to interdict in the destruction of β-cells and preserve
C-peptide production [233–249]. Though no T cell-targeted
therapy has achieved long-term remission with clinical equi-
poise, evidence of temporary or partial efficacy in subsets of
responder subjects has been observed following treatment
with antithymocyte globulin (ATG) alone or in combination
with granulocyte colony stimulating factor (G-CSF),
teplizumab, alefacept, or abatacept [236, 242, 243, 246, 247,
249, 250].

ATG, cyclophosphamide, and G-CSF were key compo-
nents of autologous non-myeloablative hematopoietic stem
cell transplants, which restored insulin independence in pa-
tients with T1D but conferred high risk of morbidity (e.g.,
severe neutropenia requiring extended hospitalization, gonad-
al dysfunction, alopecia) [251, 252]. ATG induces T cell apo-
ptosis and complement-dependent lysis, B cell apoptosis,
modulation of antigen presenting cell surface molecules and
induction of Tregs [253] while G-CSF stimulates hematopoi-
etic mobilization [254]. Due to the high-risk nature of this
approach, several groups have attempted to deconstruct this
combination approach in hopes of designing lower risk thera-
pies that maintain efficacy. Specifically, Haller et al. recently
demonstrated that low-dose ATG plus G-CSF preserved C-
peptide for 12 months in subjects with established T1D (4–
24 months post-diagnosis), with responders characterized by
older age at disease onset [246]. Combination treatment with
low dose ATG and G-CSF induced significant and sustained
immunomodulation including elevated Tregs, reduced CD4+

and increased CD8+ T cel l f requency, increased
CD16+CD56hi NK cell frequency, and increased frequency
of CD4+PD-1+ TCM [247]. Accordingly, NGS studies in our
lab are ongoing to evaluate precise effects of therapy on the
TCR repertoire. Earlier intervention is expected to provide
improved efficacy, and a study of ATG plus G-CSF combina-
tion therapy in new-onset T1D subjects will reach the primary
endpoint in late 2017 (NCT02215200).

Development of humanized monoclonal antibodies and
immunomodulatory fusion proteins have led to similar trials
of T cell-directed therapies—namely, anti-CD3 (teplizumab),
LFA-3/Fc fusion protein (alefacept), and CTLA-4/Fc fusion
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protein (abatacept). While space limitations preclude an ex-
tensive review of these studies, it is important to note that each
of these agents has demonstrated signal indicating capacity to
preserve C-peptide through T cell modulation. That said, it is
not yet known how these T cell modulating agents (i.e., anti-
CD3, alefacept, abatacept, or ATG ± G-CSF) impact the
autoreactive Tcell repertoire, and detailed investigations with-
in prevention and reversal trials are warranted. We speculate
that early intervention, prior to epitope spreading, may pro-
vide the best opportunity to deplete immunodominant
autoreactive clonotypes using monoclonal antibodies or sim-
ilar agents (Fig. 2). Moreover, selection of the optimal biolog-
ic for tailored immune therapy may depend upon subject age,
T1D disease stage, or additional biomarkers, which have yet
to be defined. Identification of autoreactive T cell clone(s)
through NGS could provide candidate targets for monoclonal
therapy, ideally, before autoantibody development occurs.
These notions support ongoing investigation to identify key
pathogenic clones as targets for T cel l -directed
immunotherapy.

The Engineered TCR and CAR-T Experience

Autologous chimeric antigen receptor (CAR) T cells,
engineered to express a tumor antigen-specific immunoglob-
ulin variable region (single-chain variable fragment (scFv))
fused to TCR and costimulatory signaling domains, represent
a promising therapeutic strategy for the treatment of solid
tumors, B cell leukemia, and lymphoma [255–258]. A partic-
ular benefit in settings of cancer lies in the ability to deplete
malignant cells without the requirement for antigen presenta-
tion via HLA; likewise, lack of HLA restriction could enable
non-autologous T cell sources. Indeed, CAR-Tregs could be
generated for application in T1D by expressing a β-cell anti-
gen-reactive immunoglobulin scFv providing tissue-targeted
activation and eliciting bystander suppression. However, lim-
itations exist related to the requirement for surface expression
of the target antigen(s) on islets or β-cells. Alternatively, TCR
gene transfer facilitates targeted Treg therapies that recognize
intra-cellular β-cell antigens presented by HLA following na-
tive antigen uptake and presentation via antigen presenting
cells. TCR gene transfer can be accomplished via mRNA
electroporation for transient expression [259, 260] or lentiviral
transduction for stable TCR expression [261]. The former ap-
proach limits risk by bypassing the need for vector integration,
but there may be a requirement for repeat dosing due to tran-
sient expression. Whereas in settings of T1D, longer-lived
TCR “avatars” generated through lentiviral transduction may
induce long-term bystander suppression and, potentially, lead
to infectious tolerance to multiple autoantigens ([262] and Yeh
et al., in press).

Through detailed studies using experimental autoimmune
encephalomyelitis (EAE) murine models of MS, investigators

have elucidated the timeline for epitope spreading throughout
disease pathogenesis, indicating the optimal time points to
initiate tolerogenic cell therapy [263–265]. Longitudinal in-
vestigations of epitope spreading in human T1D patients are
needed and may be best accomplished through TCR repertoire
profiling of characterized receptors. Such efforts could be
used to outline tailored therapies involving engineered Treg
avatars specific for identified autoantigen(s) (e.g., insulin,
GAD, IA-2, HIPs, or insulin DRiP peptides, described above).
Given that the argument for equipoise is undoubtedly different
in settings of T1D versus hematologic malignancy, there is a
need to validate Treg avatar lineage stability and introduce
additional safety mechanisms, such as suicide genes [266].
With these notions in mind, a more complete understanding
of the TCR repertoire may identify public Treg TCRs and/or
antigen-reactivities that are particularly poised to induce tol-
erance in T1D.

Moving Forward

The emergence of high-throughput immunosequencing and
improved access to pathogenic lymphocytes within the target
organ and draining LN have enabled searching for T cell bio-
markers of T1D. T cell repertoire characterization of human
pancreas samples within the nPOD bioresource bank will
serve as a training set for moving TCR biomarkers into the
clinical space. Deep sequencing of TCRs is expected to pro-
vide the field with sensitive tools to predict disease and mon-
itor therapeutic responses. While the search for T1D-initiating
TCRs as biomarkers may not be successful (i.e., every pa-
tient’s path to autoimmunity may be unique), knowledge of
immunosequences/motifs could nonetheless aid in tracking
immune responses within an individual and could potentially
be used to generate antigen-specific Tregs for adoptive cell
therapy. TCR-specific treatments may ultimately yield durable
therapeutic benefit beyond the transient effects seen with cur-
rent, non-specific T cell-directed therapies, alone or in combi-
nation with tolerance induction strategies. Beyond this, the
capacity to monitor and detect expansions of rare but long-
lived immune memory presents the potential to monitor pa-
tients over time and pre-emptively redose and block autoim-
mune recurrence following restorative therapies.

Limited access to the pancreas in living subjects will likely
represent a key challenge as we attempt to detect from PBMC
the autoreactive clones originally identified from deceased
organ donor tissues (i.e., pancreas, spleen, LN) [38•].
Longitudinal studies including birth cohort samples are need-
ed to determine key pathogenic T cell clones or autoreactive
motifs present in the earliest disease stages, potentially prior to
insulitis or even autoantibody development. We expect that
the vast collection of data and knowledge stemming from
immunosequencing efforts will markedly improve our
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understanding of the immunopathogenesis of T1D and bring
us closer to our ultimate goals of preventing and reversing
T1D.
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